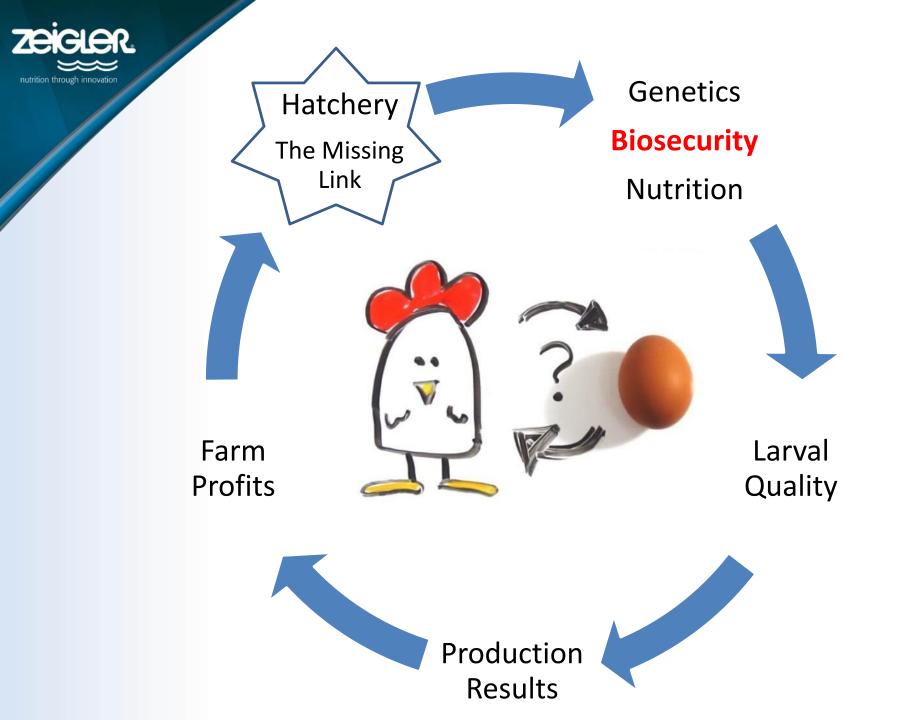

Shrimp Farm Risk Management and Biosecurity Starts with the Hatchery

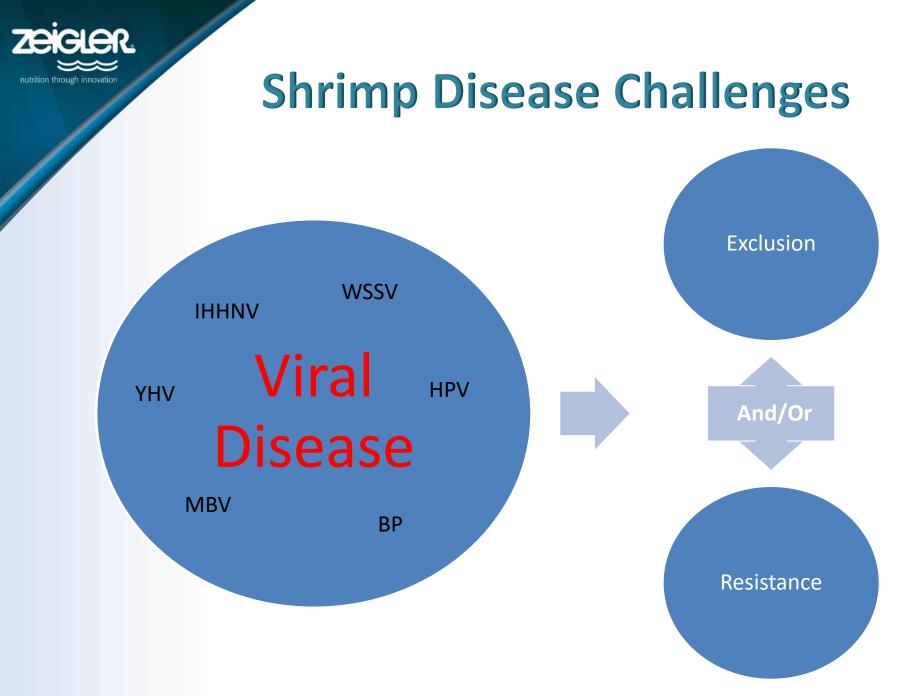
> Craig L. Browdy, Diego Flores, Peter M. Van Wyk



Global PL Production

Foundation of the Modern Shrimp Industry

Production numbers based on GOAL 2017 estimates



Biosecurity

"Biosecurity is defined as the implementation of measures that reduce the risk of disease agents being introduced and spread. It requires that people adopt a set of attitudes and behaviors to reduce risk in all activities involving domestic, captive/exotic, and wild animals and their products"

(FAO/OIE/World Bank 2008).

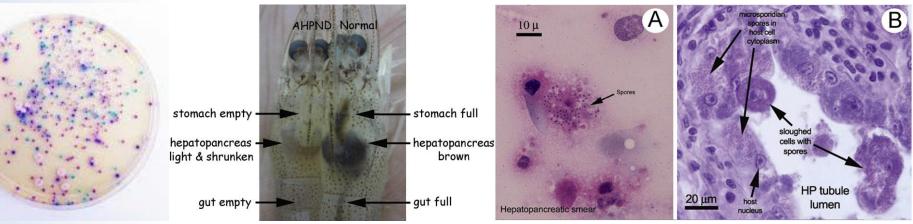
Breeding Programs SPF

SPF – Specific Pathogen Free

- \circ Began in early 1990s in response to IHHNV
- Very effective in excluding <u>known viruses</u>
- Diverse founding gene pool, avoid inbreeding
 Individual selection for growth
- > SPR Specific Pathogen Resistant
 - Based on family selection
 - Very effective for TSV, less for other viruses
- > Breeding centers, biosecurity

Ecuadorian Breeding Model

> APE – All pathogen exposed


- Microsatellite based genetic selection schemes
- Avoid inbreeding typical of mass selection
- Family and interfamily selection growth, survival, disease resistance, commercial traits
- Controlled spawning, commercial larval and pond culture, sampling top 5%, genetic analysis, selection multiplication elite families


Non Viral Pathogens More difficult to exclude

Vibrio parahemolyticus - AHPND

- Bacteria with plasmids coding for virulent toxins
- Nonobligate, survives and spreads in environment
- Enterocytozoon hepatopenaei EHP
 - $\odot\,$ Transmitted by cannibalism and cohabitation
 - Spores persist in environment

Thitamadee et al. 2016

Application of Hazard Analysis Critical Control Point (HACCP) Principles as a Risk Management Tool to Control Viral Pathogens at Shrimp Production Facilities

> Michael L. Jahncke¹, Craig L. Browdy², Michael H. Schwarz¹, Al Segars³, Juan L. Silva⁴, David C. Smith⁵, and Alvin D. Stokes³

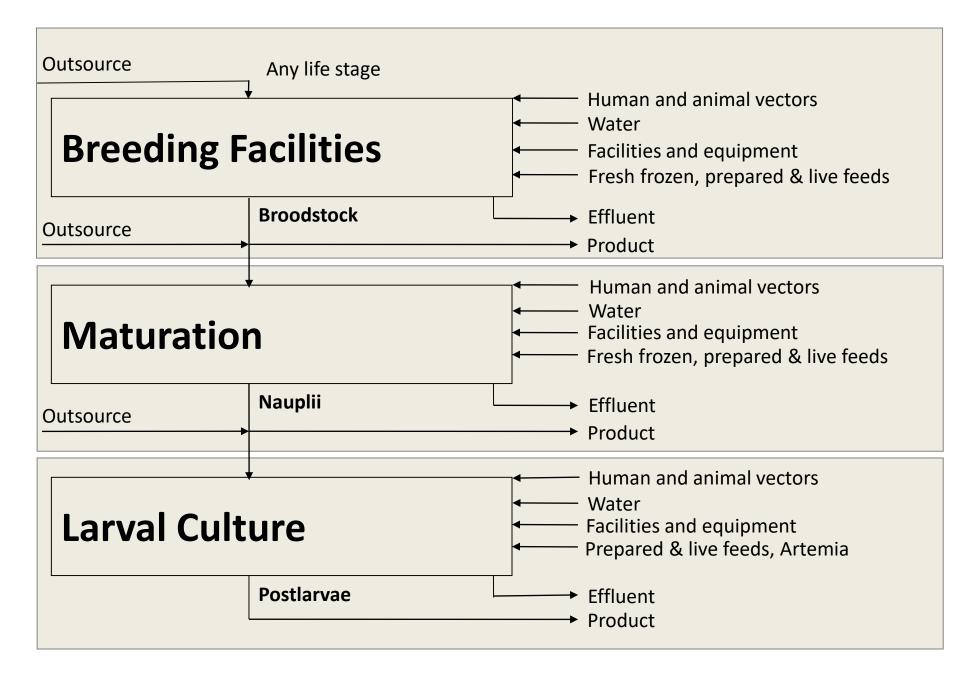
Virginia Seafood Agricultural Research and Extension Center (VSAREC) Virginia Tech / Virginia Sea Grant 102 South King Street Hampton, Virginia 23669 USA

> ²Marine Resources Resarch Institute South Carolina Department of Natural Resources 217 Ft. Johnson Road (P.O. Box 12559) Charleston, SC 29422 USA

³South Carolina Department of Natural Resources Waddell Mariculture Center P. O. Box 809 Bluffton, SC 29928 USA

⁴Mississippi State University Department of Food Science & Technology, Box 9805 Mississippi State, MS 29762-5953 USA

5Clemson University Department of Food Science and Human Nutrition, P. O. Box 189 Beaufort, SC 29901 USA


HACCP in Shrimp Facilities

Jahncke, M.L., C.L. Browdy, M.H. Schwarz, A. Segars, J.L. Silva, D.C. Smith, and A.D. Stokes. 2002. Application of Hazard Analysis Critical Control Point (HACCP) Principles as a Risk Management Tool to Control Viral Pathogens at Shrimp Production Facilities. Publication Number VSG-02-10. Virginia Sea Grant. Charlottesville, VA, USA. 33pp.

HACCP Principles

- Perform systematic hazards analysis
- Determine critical control points
- Establish critical limits
- Establish monitoring procedures
- Establish record keeping systems
- Establish verification procedures
- Determine appropriate corrective actions

Hazard Analysis

ID Potential Hazard	Signifi cant	Justify	Preventive Measures	ССР
Humans	Yes	Human vectors may transfer LSP	Controlled by SOPs	No
Facilities and equipment	Yes	Facilities and equipment may become contaminated w/LSP	Controlled by SOPs	No

Hazard Analysis

ID Potential	Signif-	Justify	Preventive	
Hazard	icant		Measures	CCP
Incoming water	Yes	Water or waterborne particles may be infective	Periodic testing for pathogens, sentinel system, disinfection of water	Yes
Shrimp - receipt	Yes	Shrimp may be infective	SPF certification with every shipment. Quarantine procedures and periodic testing for LSP	Yes

Hazard Analysis

ID Potential Hazard	Signific ant	Justify	Preventive Measures	ССР
Fresh frozen feeds, prepared feeds, and Artemia cysts	Yes	Feeds, Artemia, and fertilizers may be infective	Certificate of compliance (COC) ensuring virus free feed with every shipment. Periodic testing of feeds for LSP	Yes
Live feeds	Yes	Water or waterborne particles with live feeds may be infective	Certificate of compliance (COC) ensuring virus free feed with every shipment. Periodic testing of feeds for LSP	Yes

Hatchery Feeds Live and Fresh

Maturation Feeds:

- Polychaetes
- ≻ Squid
- - Oysters
 - o Clams
- > Artemia biomass
- ≻ Krill

Larval Feeds:

- Live marine algae
 - Chaetoceros
 - Thalassiosira
 - Tetraselmis
- Artemia nauplii

EMS testing

PCR results from AP2 PCR detection with enrichment specimens

Sources	Provin	Totals %		
Sources	Songkhla	Trad	Rayong	
Broodstock feces	2 / 5	8 / 15	14 / 24	24 / 44 (55%)
Nauplii	1/1	0/5	3/8	4 / 14 (29%)
Polychaetes	1/2	2/3	2/3	5 / 7 (71%)
Squid	1/1	0/3	3 / 5	4 / 9 (44%)
Artemia	1/1	-	0/1	1 / 2 (50%)
Oysters	0/1	-	0/2	0 / 3 (0%)
Clams	1/1	1/1	-	2 / 2 (100%)
Acetes	-	-	0/2	0 / 2 (0%)
Blood worms	-	-	0/2	0 / 2 (0%)

- : no specimens

Flegel et al. TARS 2014

Feed

Critical limits - No detectable LSP

Monitoring

What	How	Frequency	Who
No LSPs in feed	Batch testing	Continuous	Third Party Lab
Supplier acquisition and handling protocols	Periodic site visits and or review of protocols	Yearly	Facility manager
Certificate of compliance LSP free	Documentation	Every shipment	Facility manager

Feed

Verification

- LSP free feed history documented by feed receiving form records
- Periodic review of shrimp shipment receipt records
- Periodic site visits with records of visits
- Periodic testing of feed, diagnostic records
- Corrective actions
 - If certificate of compliance does not accompany incoming feed shipment, reject shipment

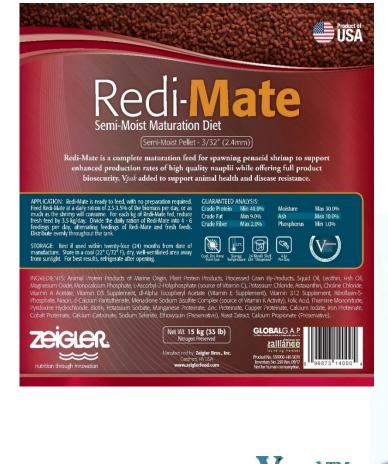
Replacement of Live and Fresh Frozen Maturation Feeds

- Improved formulated maturation feeds
- Progress towards 100% replacement but..
 - o smaller spawn size,
 - lower nauplii productivity
 - nauplii quality issues
- > Up to 80% dry weight replacement

1. Weigh

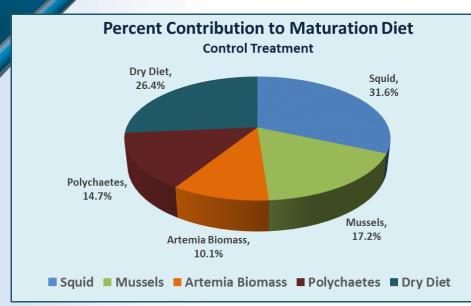
2. Add Equal Parts Water

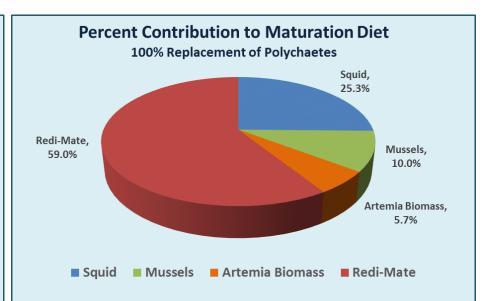
3. Mix


4. Shape and Dry

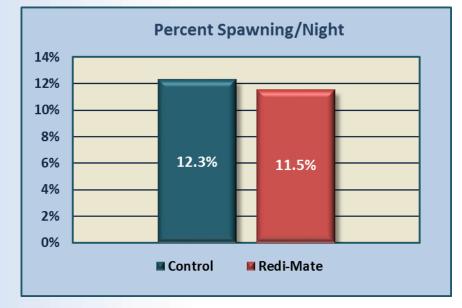
Prepared Feeds

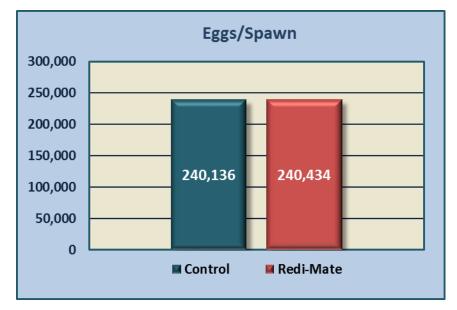
Advantages:


- > 100% pathogen free -
- Formulated as nutritionally complete diets containing optimal levels of HUFAS, pigments, and nutrients essential for supporting the metabolic demands of maturation and spawning
- Can be supplemented with immune system stimulants, probiotics
- Easier storage
 - No need to freeze
 - Long shelf-life

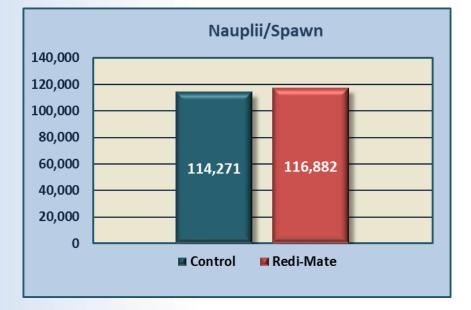


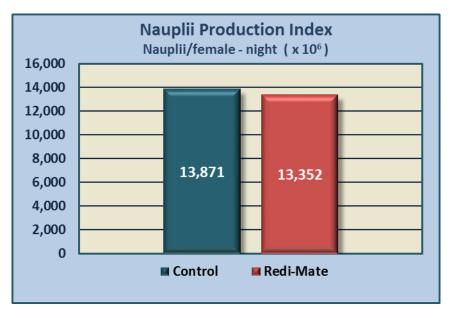
Fresh Maturation Feed Replacement

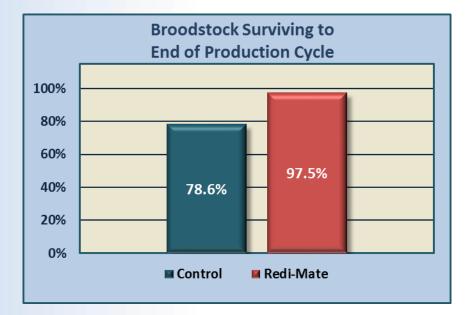


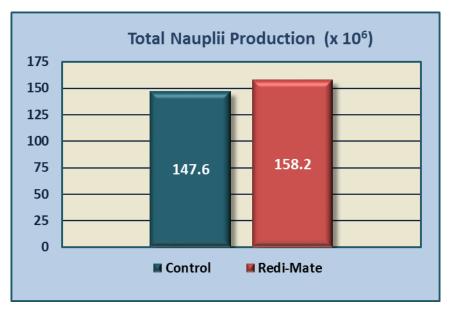


Feed	% BW/day (wet weight)	g dry wt per g wet wt	% BW /day (dry weight)	Percentage of Dry Diet	Feed	% BW/day (wet weight)	g dry wt per g wet wt	% BW /day (dry weight)	Percentage of Dry Diet
Squid	11.0%	20%	2.20%	31.6%	Squid	8.8%	20%	1.76%	25.3%
Mussels	6.0%	20%	1.20%	17.2%	Mussels	3.5%	20%	0.70%	10.0%
Artemia Biomass	7.0%	10%	0.70%	10.1%	Artemia Biomass	4.0%	10%	0.40%	5.7%
Polychaetes	6.0%	17%	1.02%	14.7%	Polychaetes	0.0%	17%	0.00%	0.0%
Dry Diet	2.0%	92%	1.84%	26.4%	Redi-Mate	5.6%	73%	4.10%	59.0%
Total per day	32.0%		6.96%	100.0%	Total per day	21.9%		6.96%	100.0%


Replacement of Maturation Fresh Feeds




Replacement of Maturation Fresh Feeds



Replacement of Maturation Fresh Feeds

100% replacement of frozen polychaetes

- More nauplii produced
- Improved nauplii quality
 - More yolk
 - More active
 - Better phototaxis

Diet Treatment	Total Spawns	Nauplii/ Spawn	Total Nauplii
Redimate	1,389	116,882	158.2 M
Control	1,327	114,271	147.6 M

March 1 – April 4, 2018

Towards Algae Replacement

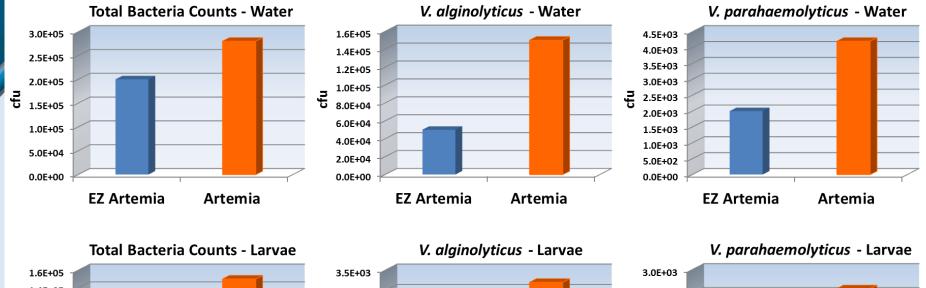
- Algae can be a significant source of contamination and cause ZII syndrome
- Liquid feeds with optimal digestibility, cold processed for nutritional integrity, water stability, excellent performance
- Successful use in hatcheries with Algae contamination or production bottlenecks

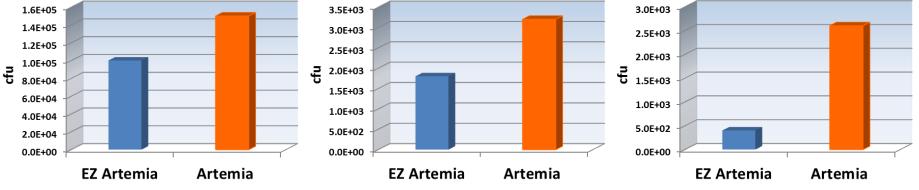
Artemia nauplii are an important vector for Vibrio

- High Vibrio loads associated with hatched nauplii are an important pathway for Vibrio introduction into larval tanks
- Glycols released from the cysts during hatching is like a nutrient broth for culturing Vibrio
- Disinfection and decapsulation of cysts prior to hatching doesn't solve the problem because Vibrio is seeded into hatching tanks from biofilms

Artemia Replacement

- Liquid diets designed to replace up to 100% of Artemia in hatcheries
- Formulated to match or exceed the nutritional profile of enriched
 Artemia
- > 2 Sizes (50-200 & 300-500 micron)
- Can be fed from Zoea to PL
- Stable supply and costs significantly less than Artemia
- Each lot certified Biosecure




100% Replacement of Artemia nauplii -Results from 5 countries

Parameters	Country 1 (2014)	Country 1 (2015)	Country 2 (2015)	Country 3 (2015)	Country 4 (2016)	Country 5 (2016)
Stocking Density (nauplii/L)	185	85	200	300	190	117
EZ Artemia Feed Rate (kg/million PLs)	2.75	4.5	1.66	4	2.02	1.68
Culture Cycle	10 days Z1 - PL4	12 days Z1 - PL4	11 days Z1 - PL4	15 days Z1 - PL8	20 days Z1 - PL13	12 days Z1 - PL6
Survival (%)	85%	70%	69%	50%	70%	92%
Harvest Weight	0.87 mg		0.72	1.00 mg	5.50 mg	1.1-1.2 mg

Bacterial Counts Ecuadoran Hatchery

nutrition through innovation

Note: All tanks were fed with 100% EZ Artemia up until 2 days before harvest. Several larval tanks were fed Artemia instead of EZ Artemia for the last two days before harvest. These counts compare the bacterial counts just before harvest of the tanks switched to artemia with those fed only with EZ Artemia.

Testing and Certification

January 29, 2018

Case: 18-035-A

nutrition through innovation

Aquatic Animal Health Laboratory

Harbor Branch Oceanographic Institute at FAU Ft. Pierce FL 34946

CERTIFICATE OF ANALYSIS

THE UNIVERSITY OF

ARIZONA.

TUCSON ARIZONA

Obsistant A Main

To Whom It May Concern:

This is to certify that <u>fourteen (14)</u> samples of <u>Shrimp Diet</u> were received from <u>Zeigler Bros., Inc.</u> on <u>11/17/2017</u> to be tested for the presence of the following OIE invertebrate pathogens of concern: EHP, IHHNV, WSSV, NHP, EMS, TSV, YHV, IMNV, WTD and crayfish plague.

Let it be known that the samples tested and identified below was negative for the aforementioned pathogens by the Polymerase Chain Reaction (PCR) test (viruses) and by isolation on mycological media (crayfish plague).

Photographs of the gel electrophoresis patterns made from the PCR tests may be obtained from the Aquatic Animal Health Lab, upon written request.

PCR and Bioassay Analysis:

Log	Rec.	Product ID	Lot No.	Results
2529	11/17/17	Shrimp Grower 35 2.4mm	3274533381-17307	Negative
2529	11/17/17	Shrimp Grower 35 2.4mm	3274423381-17315	Negative
2529	11/17/17	Shrimp Grower 35 2.4mm	3274423381-17315	Negative
2529	11/17/17	Shrimp Grower 35 2.4mm	3274423381-17315	Negative
2529	11/17/17	Shrimp Grower 35 2.4mm	3274533381-17317	Negative
2529	11/17/17	Shrimp Maturation 2.4mm	3446413397-17318	Negative
2529	11/17/17	PL Raceway 40-9 1.0mm	3847709244-17312	Negative
2529	11/17/17	PL Raceway 40-9 VPak 1.5mm CS	3234016144-17317	Negative
2529	11/17/17	Brine Shrimp Flake Black	7347426589-17313	Negative
2529	11/17/17	Brine Shrimp Flake Black	7347426589-17317	Negative
2529	11/17/17	Larva Diet Z Plus Flake	3847316589-17313	Negative
2529	11/17/17	Larva Z Plus Flake	3847316589-17318	Negative
2529	11/17/17	Z Plus Flake	3847316589-17319	Negative
2529	11/17/17	EZ Larva 250-600	5579003166-17317	Negative

m

AQUACULTURE PATHOLOGY LABORATORY

School of Animal & Comparative Biomedical Sciences

BioSciences West; Building 88, room 226

1041 E. Lowell Street, Tucson, Arizona 85721-0090 Phone: 520-621-4438; Email: dhuie@email.arizona.edu

ection of WSSV, IHHNV, TSV, YHV, IMNV, *Pv*NV, *Mr*NV, completed. One bag of feed (EZ Artemia 1 Lot #5599006066-condition. The sample collection location was Zeigler Bros., Inc. representative sample (approx. 30mg) was collected for DNA and V, IMNV, *Pv*NV, *Mr*NV, APHND/EMS, EHP and NHP-B were g was completed on January 29, 2018. A summary of the tests and

e helpful to you. The hard copy will be mailed to you. If there are l free to contact us.

n the samples submitted to our laboratory for examination, health status evaluation, disease diagnosis, ost appropriate assay(s) for the determination of the health/pathogen status of all specimers whom the veck or facility "certification" or a "certificate" of health/pathogen status for the sample(s) tested or for

les submitted to our laboratory for pathogen detection. The PCR assay used by this laboratory for the ld be considered as experimental and tentative. Whenever possible, PCR results should be confirmed "haility "certification" or a "certificate" of health/pathogen status for the sample(s) tested or for the

ional des Épizooties or the Organization or World Animal Health Organization) Reference Laboratory mal and Hematopoietic Necrosis, Spherical Baculovirus, Tetrahedral Baculovirus and Infectious r export testing for White Spot Disease, Taura Syndrome, Infectious Hypodermal and Hematopoietic tious Myonecrosis, Yellowhead Disease, Acute hepatopancreatic necrosis disease, Crayfish plaque bergii nodavirus), and Necrotizing hepatopancreatic intervolution (Hepatobacter penaeid).

Arun K. Dhar, Ph.D. Associate Professor Aquaculture Pathology Laboratory Director

A More Biosecure Future

The Past

- Hatchery productivity prioritized over biosecurity and sustainability
- Attachment to traditional approach to feeding with live and natural feeds
- Billions of dollars lost due to diseases resulting from these practices

The Future

- A mature industry that prioritizes biosecurity
- Adoption of new approaches to hatchery nutrition based on biosecure prepared feeds
- A new era of sustainability and profitability for the industry

Wishing you all great success!

