THE USE OF INEXPENSIVE SALT MIXTURES FOR INLAND, INTENSIVE SHRIMP (LITOPENAEUS VANNAMEI) FARMING

Andrew J. Ray*, Jill C. Fisk, Leo J. Fleckenstein, and Thomas W. Tierney

*Associate Professor, School of Aquaculture Andrew.Ray@kysu.edu

Kentucky State University's Land Grant Program

Shrimp Production

- ▶#1 Seafood Item in Most Developed Countries
- **►** Most Shrimp are Imported
 - **▶** Trade Deficit
 - ► Food Safety (antibiotics/environmental toxins)
- ► Produce Shrimp Inland, Near Markets
 - **▶** Fresh, Never Frozen Possible
 - **▶** High Quality, Near Consumers
 - ► Healthy, Safe
 - **▶** Difficult to Acquire Otherwise
- ► High Demand = Higher Sale Price

Recirculating Aquaculture Systems (RAS)

- **▶** Closed systems
- ► Include Biofloc, Clear Water, & Hybrids of these
- ► Minimal H₂0 exchanges
 - ▶ Salt and heat retention... marine animals inland!
- **▶** Environmentally safe... waste management
- **▶** High Biosecurity
- **▶** High animal densities
- ► Year-round production indoors → Tropical sp.
- ► Higher operational costs though...

Artificial Seawater Formulation

- Artificial Marine Sea Salt Mixes = Great, But Expensive
- ► Salinity: RAS > 10 g/L
- ► How About Home-Made Salt Formulations To Lower Costs?
 - ▶Sure... But Be Careful!
- ► Recurring Problems: Deficiencies In Na, Mg, K, & Ca Along With Ionic Balances
- ► Formulation of Low Cost Alternative Sea Salt Mix Presents New Opportunities

Experimental Design

- ► Crystal Sea® Salt (CSS)
 - ► Standard, Complete Sea Salt Mix
- ► Least Cost Salt (LCS)

15 g/L Salt Solution @ 1m ³			
NaCl	11,310 (g)		
$MgSO_4$	1,830 (g)		
$MgCl_2$	855 (g)		
CaCl ₂	376 (g)		
KCl	240 (g)		
NaHCO ₃	90 (g)		

5 Treatments

- ▶ 1.) **100% CSS**
- ▶ 2.) **75%** CSS **25%** LCS
- ▶ 3.) **50%** CSS **50%** LCS
- ▶ 4.) 75% LCS 25% CSS
- ▶ 5.) 100% LCS
 - \triangleright 20 1m³ tanks
 - ▶ 4 tanks per treatment
- ► Hybrid systems with external settling chambers and biofilter (MBBR)
- ► Salinity: 15 g/L for all tanks
- ▶ Density: 250 Shrimp/m³

Management

- **▶** Duration: 84 days
- ► Initial Weight: 4.3 (g)
- ► Fed 3x Daily
- ► 2x Daily: Temperature, DO, pH, & Salinity
- ► 1x/Week: Ammonia (TAN), Nitrite (NO₂-N), and Turbidity (NTU)
- ► Final Data: Shrimp Production, Mineral Analysis

Statistical Analysis

- **▶**Shrimp Production
 - **▶**One-way ANOVA
- **►**Mineral Analysis
 - **▶**One-way ANOVA
- **▶**Water Quality
 - **▶**Repeated Measures ANOVA

Water Quality

Treatment					
	100% CSS	75% CSS	50% CSS/LCS	75% LCS	100% LCS
Temperature °C	$27.7 \pm 0.1 \ (25.2 - 28.7)$	27.7 ± 0.1 (25.1-28.6)	$27.9 \pm 0.1 (25.3 - 28.7)$	$27.7 \pm 0.1 (25.2 - 28.6)$	$27.7 \pm 0.1 (25.2 - 28.7)$
Dissolved Oxygen (mg L ⁻¹)	$6.2 \pm 0.0 (5.4-7.0)^{ab}$	$6.2 \pm 0.0 (5.4-6.9)^{c}$	$6.2 \pm 0.0 (5.4 - 6.8)^{bc}$	$6.2 \pm 0.0 (5.5 - 6.8)^{a}$	$6.2 \pm 0.0 (5.5 - 6.9)^{bc}$
pН	$7.9 \pm 0.0 (7.7 - 8.3)^{a}$	$7.9 \pm 0.0 (7.7 - 8.3)^{b}$	$7.9 \pm 0.0 (7.7 - 8.3)^{b}$	$7.9 \pm 0.0 (7.7 - 8.3)^{b}$	$7.9 \pm 0.0 (7.7-8.3)^{b}$
Salinity (g L ⁻¹)	$15.1 \pm 0.0 (14.6 \text{-} 15.7)$	$15.2 \pm 0.0 (14.5 \text{-} 15.7)$	$15.2 \pm 0.0 (14.4-15.8)$	$15.2 \pm 0.0 \ (14.3 \text{-} 15.7)$	$15.2 \pm 0.0 (14.8 \text{-} 15.7)$
Ammonia (mg TAN L ⁻¹)	$0.2 \pm 0.1 (0.1\text{-}1.5)$	$0.2 \pm 0.1 (0.1-1.0)$	$0.3 \pm 0.1 (0.1-1.4)$	$0.2 \pm 0.1 (0.1\text{-}1.0)$	$0.3 \pm 0.1 (0.1\text{-}1.2)$
Nitrite (mg NO ₂ -N L ⁻¹)	$1.2 \pm 0.4 (0.4 - 3.9)^{ab}$	$0.8 \pm 0.1 (0.4 - 1.6)^{a}$	$1.2 \pm 0.3 (0.4 - 3.6)^{ab}$	$0.9 \pm 0.2 (0.4-2.0)^{ab}$	$1.2 \pm 0.2 (0.5 - 2.3)^{b}$
Turbidity (NTU)	$32.1 \pm 2.8 (18.7-48.8)$	33.8 ± 3.2 (16.6-46.9)	$30.1 \pm 2.8 \ (15.0-40.7)$	28.2 ± 2.2 (19.4-39.3)	32.6 ± 2.6 (19.4-42.44)

Minerals

Treatment

$\mathbf{H}_{2}0$	100% CSS	75% CSS	50% CSS/LCS	75% LCS	100% LCS
Na	5361 ± 471	5150 ± 353	5320 ± 399	5207 ± 433	5572 ± 440
Ca	99 ± 9	101 ± 11	109 ± 10	121 ± 12	126 ± 14
SO_{4-2}	1635 ± 88^{a}	$1288 \pm 41^{\mathrm{b}}$	$1165 \pm 27^{\mathrm{bc}}$	1163 ± 29^{bc}	974 ± 28^{c}
Mg	591 ± 51^{a}	520 ± 33^{ab}	477 ± 33^{ab}	430 ± 34^{ab}	411 ± 32^{b}
Sr	4.6 ± 0.4^{a}	4.0 ± 0.1^{ab}	3.8 ± 0.1^{ab}	3.6 ± 0.1^{b}	3.3 ± 0.3^{b}

Treatment

Tissue	100% CSS	75% CSS	50% CSS/LCS	75% LCS	100% LCS
Na	26117 ± 1429	28671 ± 1575	27655 ± 1277	27572 ± 1133	26453 ± 437
Ca	57883 ± 6205	63467 ± 9730	69160 ± 3374	71384 ± 1394	64731 ± 771
P	47276 ± 391^{ab}	52034 ± 2230^{ab}	52672 ± 574^{a}	47683 ± 1333^{ab}	$46697 \pm 898^{\mathrm{b}}$
K	24970 ± 598^{ab}	26363 ± 793^{a}	25487 ± 928^{ab}	23919 ± 717^{ab}	$22682 \pm 603^{\mathrm{b}}$

Shrimp Production

Treatment					
	100% CSS	75% CSS	50% CSS/LCS	75% LCS	100% LCS
Average Weight (g)	22.9 ± 0.8	22.2 ± 0.5	22.4 ± 0.2	22.5 ± 0.6	22.5 ± 0.4
Growth rate (%)	1.6 ± 0.1	1.5 ± 0.0	1.5 ± 0.0	1.5 ± 0.1	1.5 ± 0.0
FCR	1.8 ± 0.1	1.7 ± 0.1	1.8 ± 0.1	1.6 ± 0.1	2.1 ± 0.2
Kg/m ⁻³	3.8 ± 0.2	3.9 ± 0.2	3.8 ± 0.3	4.0 ± 0.2	3.2 ± 0.3
Survival (%)	67.2 ± 3.8	70.3 ± 3.9	68.3 ± 5.2	73.1 ± 4.2	57.2 ± 6.2

• No significant differences detected

Salt Cost per Ingredient			Salt Cost per Formulation		
Items	\$USD per 1m ⁻³	\$USD per/Kg	Treatment	\$USD per 1m ⁻³	
NaCl (22.6 Kg)	\$5.37	\$0.42	100% CSS	\$25.08	
MgSO ₄ (22.6 Kg)	\$1.96	\$0.95	75% CSS	\$21.02	
MgCl ₂ (25 Kg)	\$0.67	\$0.70	50% CSS/LCS	\$16.96	
CaCl ₂ (22.6 Kg)	\$0.60	\$0.77	75% LCS	\$12.89	
KCl (25 Kg)	\$0.23	\$0.86	100% LCS	\$8.83	
NaHCO ₃ (22.6 Kg)	\$0.01	\$0.73			

> 100% CSS is 2.8x more expensive than LCS

Cost of Salt per Kg of Shrimp

Treatment	\$USD
100% CSS	\$6.66 ^a
75% CSS	\$5.50 ^a
50% CSS/LCS	\$4.57 ^b
75% LCS	\$3.20 ^c
100% LCS	\$2.87 ^c

- >100% LCS & 75% LCS Significantly Less Cost/kg Than the Others
- >100% CSS is 2.3x More Expensive (per Kg of Shrimp) Than 100% LCS!

Follow Up Study... Low levels of CSS

- ▶ Treatments
 - ▶ 100% LCS
 - ▶ 97.5%/2.5% LCS/CSS
 - ▶ 95%/5% LCS/CSS
 - ▶ 90%/10% LCS/CSS
 - ▶80%/20% LCS/CSS
 - ▶ 75%/25% LCS/CSS

- ►Similar Design
- Same Systems/
 Management
- ►Same Data Analysis
- ► Very Similar Results!
- ► No Significant Differences in Shrimp Production

Conclusions

- **▶** No Effect (or Very Little) on Water Quality
 - ► Some inconsistent differences in DO, pH, and NO₂-N
- **▶** Some Differences in Mineral levels
 - ightharpoonup $H_20 \rightarrow SO_4$, Mg, & Sr
 - ► Shrimp Tissue → P & K

- **▶** No Significant Differences in Shrimp Production
- ► Cost of Salt per Kg Shrimp < Half the Cost

Future Investigations

Determine if There are Effects of Salt Concentration (salinity levels)

- **▶** Long-Term Water Use Effects
- **▶**Effects of System Type
- ► Effects on Overall Production Economics

Thank You!

- ► Kentucky State University School of Aquaculture
- **▶**Funding: USDA-NIFA
 - **▶** Agriculture and Food Research Initiative
- ► KSU Center for Sustainable Shrimp Aquaculture Production

